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ABSTRACT 

 

Patch-based Single-layer Unsupervised Feature Learning 

(SUFL) has been successfully applied in several tasks of 

computer vision. In the feature learning process, the key 

ingredient is how to learn a good feature mapping that 

connects patches to feature vectors. Among various feature 

mapping methods, the sparse filtering is easy to be 

implemented and hyper-parameter free. However, the 

standard sparse filtering method only considers the sparsity 

distribution of the learned features, ignoring the feature 

mapping matrix itself. This will lead to a random magnitude 

for mapping matrix and further weaken the generation 

performance. In this paper we proposed L2 regularized 

sparse filtering for the feature mapping in SULF. 

Classification experiments on three different datasets, i.e., 

CIFAR-10, small Norb, and subsets of CISIA-HWDB1.0 

handwritten characters, show that our method has better 

performance comparing with the standard sparse filtering. 

 

Index Terms— unsupervised feature learning, single-

layer network, sparse filtering, L2 regularization 

 

1. INTRODUCTION 

 

Unsupervised feature learning [1][2][3][4] has been 

extensively used in a wide spectrum of computer vision 

applications along with the development of deep 

learning[5][6]. It becomes a promising tool to learning 

effective feature presentations from unlabeled data in recent 

years.  

In general, unsupervised feature learning is based on 

two types of framework: deep architecture [1][2][3] and 

shallow architecture with a single-layer network [4][7]. 

Though recent researches on deep learning have shown that 

deep architecture could learn multi-level hierarchies of 

features and obtain constantly improvements on several 

benchmark datasets [3][8], the single-layer network is still a 

favored and commonly used method and draws more and 

more attentions. There are two reasons for this. First, 

compared to deep architecture, single-layer network is 

simple and easy to use [4]. The single-layer network does 

not rely on complex selection of the hype-parameters and 

time-consuming fine-tune of the network to get a 

satisfactory result. Sometimes the single-layer network 

could obtain comparable performance with the deep 

architectures [9]. Second, since deep learning [5] was 

brought out in 2006, it becomes increasing popular to use a 

single-layer network to build blocks for a deep architecture, 

resulting in various deep learning methods [10][11]. The 

performance of the single-layer network influences the 

whole performance of the deep architecture.  

 

 

 

 

 

 

 
 (a) Training stage: patches extraction, pre-processing, and feature 

mapping learning. 

 

 

 

 

 

 

 
 (b) Testing stage: extract features by convolution and pooling 

operations for a new input image. 

Fig. 1. The framework of the single-layer unsupervised feature 

learning. 

 

Commonly, there are typical pipelines for unsupervised 

feature learning using single-layer network, as seen in 

Figure 1. It involves training and testing stages: (a) The 

random patches extraction, pre-processing for training and 

feature mapping learning; (b) Convolutional feature 

extraction and pooling for new images. In above steps, the 

feature mapping learning is the most important step that 

generates a mapping matrix from the patches to feature 

vectors. It determines the performance of the feature. There 

are many algorithms available for the feature mapping 

learning, such as sparse restricted Boltzmann machines 

(RBM) [12], sparse autoencoders [13][14], K-means [9], 

ICA [15], sparse filtering [16] and so on. In these methods, 

sparse RBM and sparse auto-encoder have a lot of hyper-

parameters to tune; K-means could obtain satisfying results 

only when the number of the feature is very large; and ICA 

relies on whitening operation and is difficult to learn over-
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complete feature representation. In contrast, sparse filtering 

is a hyper-parameter free algorithm given various numbers 

of features with less pre-preprocessing operation. 

The sparse filtering works by imposing constraints on 

sparse distribution of features. However, it does not consider 

the property of the mapping learning matrix itself. In this 

paper, we propose a L2 regularized sparse filtering method 

for unsupervised feature learning. For concreteness, a L2 

weight decay constraint item is added to feature learning 

object function, which tends to decrease the magnitude of 

the weights in the mapping function and improve the 

generalization ability. Hence, better weights are learnt for 

the feature learning. We evaluate our method on three 

different datasets, i.e., CIFAR-10, small Norb, and subsets 

of CISIA-HWDB1.0 handwritten characters. Classification 

experiments show that our proposed method has better 

performance than the standard sparse filtering. 

In the following, we first describe the single-layer 

unsupervised feature learning in Section 2; Section 3 

presents the details of the proposed method, followed by 

classification experiments in Section 4. Section 5 outlines 

the conclusion. 

 

2. SINGLE-LAYER UNSUPERVISED FEATURE 

LEARNING 

 

We first describe the single-layer unsupervised feature 

learning process whose general pipeline is as follow [4]. 

1. Collect a set of small patches from the training set 

randomly and conduct pre-processing. 

2. Learn a feature mapping matrix to build a mapping 

from input patches to feature vectors using certain single-

layer network. 

3. After the learning process, we can extract features for 

a new image using the learned mapping matrix by 

convolution and pooling operations. 

 

2.1. Patch extraction and pre-processing 

 

Let (1) (2) ( ) ( ){ , ,..., }, W Hm i n n dI I I I   D  be the unlabeled 

images used for training ( d  is the channel. If the input 

image is an RGB image, 3d  , otherwise 1d   for a gray 

image). Given a w w  receptive field, N  patches of size 

w w d   are extracted at random location from all the 

images, followed by represented into column vectors. Let 
(1) (2) ( ) ( ) 1{ , ,..., },N i w w dp p p p    P  denote the patches. 

Generally, in order to get good performance, there are some 

pre-processing operations, such as the mean value 

subtraction, contrast normalization, whitening and so on. 

Here, we use (1) (2) ( ) ( ) 1{ , ,..., },N i w w dX x x x x      to denote 

the pre-processed patches.  

 

2.2. Feature mapping learning 

 

Once we get the patches, a single layer network (only one 

hidden layer) is trained to learning a function 

: w w d Kf     that maps a patch ( )ix  to a new feature 

vector ( )if  of K  dimensions using various criterions or 

algorithms. Many types of methods can be applied for this 

purpose. For example, RBM is defined by restricting the 

interactions of input layer and hidden layer in the 

Boltzmann energy function; Auto-encoder restricts the 

hidden layer to be a compressed or sparse represent of the 

input; Sparse filtering works by optimizing the sparsity 

distribution of the hidden layer. By this, the hidden layer 

will be a meaningful representation of the original patches. 

After training, we call the learned weights matrix W
 
of the 

network as filters, base or feature extractors. 

 

2.3. Convolution and pooling 

 

By the learned weights W , we could compute the feature 

representation for a new input image. Specifically, the W  is 

applied to conduct convolution operation with every w w  

patch of the input image to yield a feature vector. Formally, 

we use i Kf   to denote the feature of an input patch. We 

can get a feature mapping image with dimension of 

( 1) ( 1)H Wn w n w d      . (We can also extract features 

convolutionally over the whole image with a larger steps, 

the situation described above is when the step is equal 1 

pixel.)  

Typically we need to reduce the dimensionality of the 

feature represent image by pooling operation while 

obtaining some invariance. The pooling works by splitting a 

feature mapping image into four equal-sized quadrants, and 

summing up or getting the maximum of each quadrant into a 

vector. This yields a 2 2 d   feature image. Finally all the 

vectors are concatenated into a feature vector of dimension 

4K  to represent the image. 

 

3. L2 REGULARIZED SPARSE FILTERING 

 

Sparse filtering is a feature mapping method proposed by 

Ngiam [16]. It works by optimizing the sparsity distribution 

of the hidden layer (features) in three principles: population 

sparsity, lifetime sparsity, high dispersal. For example, 

given a finite input (1) (2) ( ){ , ,..., }N
D N x x x X , with a 

mapping matrix K DW  the output of the network is: 
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where each column corresponds to the feature of an input 

sample. First each row is normalized by its L2 norm across 

the samples 
2

/i i i  f f f , then each column is normalized 
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by its L2 norm 
2

ˆ /j j j  f f f .The object function of sparse 

filtering is the sparseness constraints for each example, 

namely 
1

1

ˆ 
N

j

i

minimize 



 f . A more detailed study can be 

referred in [16].  

The above method only considers the constraints of the 

features’ sparsity distribution, ignoring the mapping matrix 

itself. Thus, we proposed L2 regularized sparse filtering by 

adding a weight decay item using L2 regularization. By this, 

the network could learn a better weight matrix and have 

improved generalization performance for the new data. The 

optimization problem is defined as followed: 

2
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where   is the regularization parameters, controlling the 

relative importance of sparsity distribution and weight decay. 

The objection function can be easily implemented with the 

off-the-shell minimization method L-BFGS [17]. 

 

4. EXPERIMENTS 

 

We evaluated the L2 regularized sparse filtering for 

classification experiments on three different dataset: 

CIFAR-10 [18], small Norb [19], subsets of CASIA-

HWDB1.0 [20]. Comparative experiments were provided to 

illustrate better performance of proposed method over the 

standard sparse filtering. We used the following protocol for 

all the experiments. 

1. We obtained a collection of 100000 patches with 

certain receive field randomly from the training set, 

followed by pre-processing using brightness and local 

contrast normalization to alleviate the variety of colors and 

brightness: 
( ) ( )

( )

( )

( )

var( )

i i
i

i

p mean p
x

p 





 (3) 

where   was used to avoid division by zeros and get some 

purpose of noise suppression, and it was set as 10 during the 

whole experiments. 

2. The regularization parameter   was fixed at 0.01, 

and the objection function was optimized using the L-BFGS 

package [21] until convergence. 

3. For training and test sets, features were extracted 

convolutionally with every patch and pooled into quadrants 

as the final feature representation of an image. A Linear 

SVM was trained used for classification experiments, and 

different hidden features were evaluated for proper 

comparison. 

 

4.1. CIFAR-10 classification 

 

The CIFAR-10 dataset [18] is a collection of 32×32 

color natural object images, consisting of ten object 

categories: airplane, automobile, bird, cat, deer, dog, frog, 

horse, ship and truck. There are 5000 training images and 

1000 test images per class. The dataset is challenging due to 

its low resolution and vast variability, and has been 

extensive employed to evaluate the performance of feature 

learning methods. Some example images can be seen in 

Figure 2(a). 

Table 1. Comparative classification accuracy on CIFAR-10. 

#Features 100 200 400 800 

Sparse filtering 57.26 59.97 61.78 63.46 

L2 Sparse filtering 57.13 60.39 62.05 63.89 

Considering the resolution of the image, we select 

receptive field size 6w   for feature learning. The learned 

filters are shown in Figure 3(d), in which each filter 

corresponds to a row of the weight matrix W . As we can 

see, they are oriented, localized edge filters. Table 1 shows 

the classification results with different features. As we can 

see, the L2 regularized sparse filtering yields higher 

performance. 

 

4.2. Small Norb classification 

 

The small Norb dataset [19] is a collection of 96×96 gray 

images from 3D toys. It contains 50 toys belonging 5 

generic classes: four legged animals, human figures, 

airplanes, trucks and cars. Figure 2(b) shows some examples 

of the dataset. Following the partitioning scheme in [19], 

there are 48600 images for training and 48600 images for 

testing in total. The learned filters are shown in Figure 2(e) 

(receptive field size 12w  ), and Table 2 lists the 

comparative experimental results. Again, the L2 sparse 

filtering achieves higher accuracy. 

Table 2. Comparative classification accuracy on small Norb. 

#Features 100 200 400 800 

Sparse filtering 84.19 85.76 87.21 88.19 

L2 Sparse filtering 84.58 85.91 87.63 88.61 

 

4.3. Offline handwritten Chinese character recognition 

 

Offline handwritten Chinese character recognition is a 

difficult task due to large variability of stroke and writing 

style. Many types of classification framework are proposed 

to improve the recognition rate based on gradient feature, 

which has been granted as the best feature for character 

recognition [22]. Here, we try to use L2 regularized sparse 

filtering to learning feature for recognition. 

The dataset we used is CASIA-HWDB1.0 [20], 

containing 3866 classes’ characters with 420 samples per 

class. Each character is a 64×64 gray image. For simplify, 

we randomly selected three groups of data from the large 
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dataset, each group had 10 classes characters. Random 320 

images were used for training and the remains were used for 

test per class. 

Table 3. Comparative classification accuracy on subsets of 

CASIA-HWDB1.0 (The dimension of the final feature 

representation is #Featues×4 when using feature learning methods, 

and the dimension of gradient feature is 512). 

Groups G1 G2 G3 

Features 128 512 128 512 128 512 

Sparse filtering 95.50 96.75 95.75 97.38 97.13 98.38 

L2 Sparse filtering 95.63 97.83 96.75 97.75 97.50 98.75 

Gradient feature 99.37 - 98.50 - 98.63 - 

Table 3 shows the performance of various feature 

extraction methods. It is clearly seen that L2 regularized 

sparse filtering has better performance than sparse filtering, 

achieving approximate results with the classic 512 

dimensional gradient feature [23] (When using feature 

learning methods, the dimension of the final feature 

representation is #Featues×4). In addition, it has improved 

accuracy with more learned features as expected.  

The filters learned by L2 sparse filtering depicted in 

Figure 3(f). As we can see, the filers are oriented, which are 

very useful for character recognition intuitively. 

 

5. CONCLUSIONS 

 

In this paper, we have present the single-layer unsupervised 

feature learning with L2 regularized sparse filtering to learn 

useful feature representation from unlabeled data. This 

general L2 regularization allowed the network to learn a 

better feature mapping matrix. Classification experiments on 

three different datasets were provided to show its superior 

performance over the standard sparse filtering. 
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