
SINGLE-LAYER UNSUPERVISED FEATURE LEARNING WITH L2 REGULARIZED

SPARSE FILTERING

Zhao Yang, Lianwen Jin, Dapeng Tao, Shuye Zhang, Xin Zhang

College of Electronic and Information, South China University of Technology, China

yangdxng100@126.com, lianwen.jin@gmail.com, dapeng.tao@gmail.com

ABSTRACT

Patch-based Single-layer Unsupervised Feature Learning

(SUFL) has been successfully applied in several tasks of

computer vision. In the feature learning process, the key

ingredient is how to learn a good feature mapping that

connects patches to feature vectors. Among various feature

mapping methods, the sparse filtering is easy to be

implemented and hyper-parameter free. However, the

standard sparse filtering method only considers the sparsity

distribution of the learned features, ignoring the feature

mapping matrix itself. This will lead to a random magnitude

for mapping matrix and further weaken the generation

performance. In this paper we proposed L2 regularized

sparse filtering for the feature mapping in SULF.

Classification experiments on three different datasets, i.e.,

CIFAR-10, small Norb, and subsets of CISIA-HWDB1.0

handwritten characters, show that our method has better

performance comparing with the standard sparse filtering.

Index Terms— unsupervised feature learning, single-

layer network, sparse filtering, L2 regularization

1. INTRODUCTION

Unsupervised feature learning [1][2][3][4] has been

extensively used in a wide spectrum of computer vision

applications along with the development of deep

learning[5][6]. It becomes a promising tool to learning

effective feature presentations from unlabeled data in recent

years.

In general, unsupervised feature learning is based on

two types of framework: deep architecture [1][2][3] and

shallow architecture with a single-layer network [4][7].

Though recent researches on deep learning have shown that

deep architecture could learn multi-level hierarchies of

features and obtain constantly improvements on several

benchmark datasets [3][8], the single-layer network is still a

favored and commonly used method and draws more and

more attentions. There are two reasons for this. First,

compared to deep architecture, single-layer network is

simple and easy to use [4]. The single-layer network does

not rely on complex selection of the hype-parameters and

time-consuming fine-tune of the network to get a

satisfactory result. Sometimes the single-layer network

could obtain comparable performance with the deep

architectures [9]. Second, since deep learning [5] was

brought out in 2006, it becomes increasing popular to use a

single-layer network to build blocks for a deep architecture,

resulting in various deep learning methods [10][11]. The

performance of the single-layer network influences the

whole performance of the deep architecture.

 (a) Training stage: patches extraction, pre-processing, and feature

mapping learning.

 (b) Testing stage: extract features by convolution and pooling

operations for a new input image.

Fig. 1. The framework of the single-layer unsupervised feature

learning.

Commonly, there are typical pipelines for unsupervised

feature learning using single-layer network, as seen in

Figure 1. It involves training and testing stages: (a) The

random patches extraction, pre-processing for training and

feature mapping learning; (b) Convolutional feature

extraction and pooling for new images. In above steps, the

feature mapping learning is the most important step that

generates a mapping matrix from the patches to feature

vectors. It determines the performance of the feature. There

are many algorithms available for the feature mapping

learning, such as sparse restricted Boltzmann machines

(RBM) [12], sparse autoencoders [13][14], K-means [9],

ICA [15], sparse filtering [16] and so on. In these methods,

sparse RBM and sparse auto-encoder have a lot of hyper-

parameters to tune; K-means could obtain satisfying results

only when the number of the feature is very large; and ICA

relies on whitening operation and is difficult to learn over-

475978-1-4799-5403-2/14/$31.00 ©2014 IEEE ChinaSIP 2014

complete feature representation. In contrast, sparse filtering

is a hyper-parameter free algorithm given various numbers

of features with less pre-preprocessing operation.

The sparse filtering works by imposing constraints on

sparse distribution of features. However, it does not consider

the property of the mapping learning matrix itself. In this

paper, we propose a L2 regularized sparse filtering method

for unsupervised feature learning. For concreteness, a L2

weight decay constraint item is added to feature learning

object function, which tends to decrease the magnitude of

the weights in the mapping function and improve the

generalization ability. Hence, better weights are learnt for

the feature learning. We evaluate our method on three

different datasets, i.e., CIFAR-10, small Norb, and subsets

of CISIA-HWDB1.0 handwritten characters. Classification

experiments show that our proposed method has better

performance than the standard sparse filtering.

In the following, we first describe the single-layer

unsupervised feature learning in Section 2; Section 3

presents the details of the proposed method, followed by

classification experiments in Section 4. Section 5 outlines

the conclusion.

2. SINGLE-LAYER UNSUPERVISED FEATURE

LEARNING

We first describe the single-layer unsupervised feature

learning process whose general pipeline is as follow [4].

1. Collect a set of small patches from the training set

randomly and conduct pre-processing.

2. Learn a feature mapping matrix to build a mapping

from input patches to feature vectors using certain single-

layer network.

3. After the learning process, we can extract features for

a new image using the learned mapping matrix by

convolution and pooling operations.

2.1. Patch extraction and pre-processing

Let (1) (2) () (){ , ,..., }, W Hm i n n dI I I I   D be the unlabeled

images used for training (d is the channel. If the input

image is an RGB image, 3d  , otherwise 1d  for a gray

image). Given a w w receptive field, N patches of size

w w d  are extracted at random location from all the

images, followed by represented into column vectors. Let
(1) (2) () () 1{ , ,..., },N i w w dp p p p    P denote the patches.

Generally, in order to get good performance, there are some

pre-processing operations, such as the mean value

subtraction, contrast normalization, whitening and so on.

Here, we use (1) (2) () () 1{ , ,..., },N i w w dX x x x x     to denote

the pre-processed patches.

2.2. Feature mapping learning

Once we get the patches, a single layer network (only one

hidden layer) is trained to learning a function

: w w d Kf    that maps a patch ()ix to a new feature

vector ()if of K dimensions using various criterions or

algorithms. Many types of methods can be applied for this

purpose. For example, RBM is defined by restricting the

interactions of input layer and hidden layer in the

Boltzmann energy function; Auto-encoder restricts the

hidden layer to be a compressed or sparse represent of the

input; Sparse filtering works by optimizing the sparsity

distribution of the hidden layer. By this, the hidden layer

will be a meaningful representation of the original patches.

After training, we call the learned weights matrix W

of the

network as filters, base or feature extractors.

2.3. Convolution and pooling

By the learned weights W , we could compute the feature

representation for a new input image. Specifically, the W is

applied to conduct convolution operation with every w w

patch of the input image to yield a feature vector. Formally,

we use i Kf  to denote the feature of an input patch. We

can get a feature mapping image with dimension of

(1) (1)H Wn w n w d      . (We can also extract features

convolutionally over the whole image with a larger steps,

the situation described above is when the step is equal 1

pixel.)

Typically we need to reduce the dimensionality of the

feature represent image by pooling operation while

obtaining some invariance. The pooling works by splitting a

feature mapping image into four equal-sized quadrants, and

summing up or getting the maximum of each quadrant into a

vector. This yields a 2 2 d  feature image. Finally all the

vectors are concatenated into a feature vector of dimension

4K to represent the image.

3. L2 REGULARIZED SPARSE FILTERING

Sparse filtering is a feature mapping method proposed by

Ngiam [16]. It works by optimizing the sparsity distribution

of the hidden layer (features) in three principles: population

sparsity, lifetime sparsity, high dispersal. For example,

given a finite input (1) (2) (){ , ,..., }N
D N x x x X , with a

mapping matrix K DW the output of the network is:

11 12 1

21 22 2

1 1

N

N

K N K D D N

ij

K K KN

f f f

f f f

f

f f f

  

 
 
   
 
 
 

F W X (1)

where each column corresponds to the feature of an input

sample. First each row is normalized by its L2 norm across

the samples
2

/i i i  f f f , then each column is normalized

476

by its L2 norm
2

ˆ /j j j  f f f .The object function of sparse

filtering is the sparseness constraints for each example,

namely
1

1

ˆ
N

j

i

minimize 



 f . A more detailed study can be

referred in [16].

The above method only considers the constraints of the

features’ sparsity distribution, ignoring the mapping matrix

itself. Thus, we proposed L2 regularized sparse filtering by

adding a weight decay item using L2 regularization. By this,

the network could learn a better weight matrix and have

improved generalization performance for the new data. The

optimization problem is defined as followed:

2

1
1 1 1

2

1 1 1
2 1

ˆ J() =
2

2

N D N

j ij

j i j

N D N
j

ij

j i jj

minimize w

w







  



  



 

 

 

W f

f

f

 (2)

where  is the regularization parameters, controlling the

relative importance of sparsity distribution and weight decay.

The objection function can be easily implemented with the

off-the-shell minimization method L-BFGS [17].

4. EXPERIMENTS

We evaluated the L2 regularized sparse filtering for

classification experiments on three different dataset:

CIFAR-10 [18], small Norb [19], subsets of CASIA-

HWDB1.0 [20]. Comparative experiments were provided to

illustrate better performance of proposed method over the

standard sparse filtering. We used the following protocol for

all the experiments.

1. We obtained a collection of 100000 patches with

certain receive field randomly from the training set,

followed by pre-processing using brightness and local

contrast normalization to alleviate the variety of colors and

brightness:
() ()

()

()

()

var()

i i
i

i

p mean p
x

p 





 (3)

where  was used to avoid division by zeros and get some

purpose of noise suppression, and it was set as 10 during the

whole experiments.

2. The regularization parameter  was fixed at 0.01,

and the objection function was optimized using the L-BFGS

package [21] until convergence.

3. For training and test sets, features were extracted

convolutionally with every patch and pooled into quadrants

as the final feature representation of an image. A Linear

SVM was trained used for classification experiments, and

different hidden features were evaluated for proper

comparison.

4.1. CIFAR-10 classification

The CIFAR-10 dataset [18] is a collection of 32×32

color natural object images, consisting of ten object

categories: airplane, automobile, bird, cat, deer, dog, frog,

horse, ship and truck. There are 5000 training images and

1000 test images per class. The dataset is challenging due to

its low resolution and vast variability, and has been

extensive employed to evaluate the performance of feature

learning methods. Some example images can be seen in

Figure 2(a).

Table 1. Comparative classification accuracy on CIFAR-10.

#Features 100 200 400 800

Sparse filtering 57.26 59.97 61.78 63.46

L2 Sparse filtering 57.13 60.39 62.05 63.89

Considering the resolution of the image, we select

receptive field size 6w  for feature learning. The learned

filters are shown in Figure 3(d), in which each filter

corresponds to a row of the weight matrix W . As we can

see, they are oriented, localized edge filters. Table 1 shows

the classification results with different features. As we can

see, the L2 regularized sparse filtering yields higher

performance.

4.2. Small Norb classification

The small Norb dataset [19] is a collection of 96×96 gray

images from 3D toys. It contains 50 toys belonging 5

generic classes: four legged animals, human figures,

airplanes, trucks and cars. Figure 2(b) shows some examples

of the dataset. Following the partitioning scheme in [19],

there are 48600 images for training and 48600 images for

testing in total. The learned filters are shown in Figure 2(e)

(receptive field size 12w ), and Table 2 lists the

comparative experimental results. Again, the L2 sparse

filtering achieves higher accuracy.

Table 2. Comparative classification accuracy on small Norb.

#Features 100 200 400 800

Sparse filtering 84.19 85.76 87.21 88.19

L2 Sparse filtering 84.58 85.91 87.63 88.61

4.3. Offline handwritten Chinese character recognition

Offline handwritten Chinese character recognition is a

difficult task due to large variability of stroke and writing

style. Many types of classification framework are proposed

to improve the recognition rate based on gradient feature,

which has been granted as the best feature for character

recognition [22]. Here, we try to use L2 regularized sparse

filtering to learning feature for recognition.

The dataset we used is CASIA-HWDB1.0 [20],

containing 3866 classes’ characters with 420 samples per

class. Each character is a 64×64 gray image. For simplify,

we randomly selected three groups of data from the large

477

dataset, each group had 10 classes characters. Random 320

images were used for training and the remains were used for

test per class.

Table 3. Comparative classification accuracy on subsets of

CASIA-HWDB1.0 (The dimension of the final feature

representation is #Featues×4 when using feature learning methods,

and the dimension of gradient feature is 512).

Groups G1 G2 G3

Features 128 512 128 512 128 512

Sparse filtering 95.50 96.75 95.75 97.38 97.13 98.38

L2 Sparse filtering 95.63 97.83 96.75 97.75 97.50 98.75

Gradient feature 99.37 - 98.50 - 98.63 -

Table 3 shows the performance of various feature

extraction methods. It is clearly seen that L2 regularized

sparse filtering has better performance than sparse filtering,

achieving approximate results with the classic 512

dimensional gradient feature [23] (When using feature

learning methods, the dimension of the final feature

representation is #Featues×4). In addition, it has improved

accuracy with more learned features as expected.

The filters learned by L2 sparse filtering depicted in

Figure 3(f). As we can see, the filers are oriented, which are

very useful for character recognition intuitively.

5. CONCLUSIONS

In this paper, we have present the single-layer unsupervised

feature learning with L2 regularized sparse filtering to learn

useful feature representation from unlabeled data. This

general L2 regularization allowed the network to learn a

better feature mapping matrix. Classification experiments on

three different datasets were provided to show its superior

performance over the standard sparse filtering.

Acknowledgement. This research is supported in part by

NSFC (Grant No.: 61075021, 61201348, 61202292),

National science and technology support plan (Grant

No.:2013BAH65F01, 2013BAH65F04), GDSTP (Grant No.:

2012A010701001, S2012040008016), Research Fund for

the Doctoral Program of Higher Education of China (Grant

No.: 20120172110023).

6. REFERENCES

[1] M. D. Zeiler, G. W. Taylor and R. Fergus, “Adaptive

deconvolutional networks for mid and high level feature

learning,” in ICCV, 2011.

[2] A. M. Saxe, P. W. Koh, Z. Chen, et al., “On random weights

(d) (e) (f)

(a) (b) (c)

Fig. 2. (a), (b), (c): Sample images from three datasets, CIFAR-10, small Norb, subsets of CIASIA-HWDB1.0,

and corresponding learned filers in (d), (e), (f).

478

and unsupervised feature learning,” in ICML, 2011.

[3] H. Lee, R. Grosse, R. Ranganath, et al., “Convolutional deep

belief networks for scalable unsupervised learning of

hierarchical representation,” in ICML, 2009.

[4] A. Coates, H. Lee, A. Y. Ng, “An analysis of single-layer

networks in unsupervised feature learning,” in AISTATS, 2011.

[5] G. E. Hinton, R. R. Salakhutdinov, “Reducing the

dimensionality of data with neural networks,” Science,

313(5786): 504-507, 2006.

[6] Y. Bengio, “Learning deep architectures for AI,” Foundations

and trends in Machine Learning, 2(1): 1-127, 2009.

[7] R. Kiros, C. Szepesvari, “On linear embeddings and

unsupervised feature learning,” in ICML, 2012.

[8] L. Wan, M. Zeiler, S. Zhang, et al., “Regularization of neural

networks using dropconnect,” in ICML, 2013.

[9] A. Coates, A. Y. Ng, “Learning feature representation with K-

means,” Neural Networks: Tricks of the Trade, 7700: 561-580,

2012.

[10] P. Vincent, H. Larochelle, Y. Bengio, “Extracing and

composing robust features with denoising autoencoders,” in

ICML, 2008.

[11] A. Coates, A. Karpathy, A. Y. Ng, “Emergence of object-

selective features in unsupervised feature learning,” in NIPS,

2012.

[12] H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net

model for visual area V2,” in NIPS, 2008.

[13] M. Ranzato, C. Poultney, S. Chopra, Y. LeCun, “Efficient

learning of sparse representations with an energy-based

model,” in NIPS, 2006.

[14] A. Y. Ng, “Sparse autoencoder,” CS294A Lecture notes,

Stanford University, 2011.

[15] A. Hyvärinen, E. Oja, “Independent component analysis:

algorithms and applications,” Neural Networks, 13(4):411-

430, 2000.

[16] J. Ngiam, P. W. Koh, Z. Chen, et al., “Sparse filtering,” in

NIPS, 2012.

[17] Q. V. Le, J. Ngiam, A. Coates, el at., “On optimization

methods for deep learning,” in ICML, 2011.

[18] A. Krizhevsky. “Learning multiple layers of features from

tiny images,” Master’s thesis, Department of Computer

Science, University of Toronto, 2009.

[19] Y. LeCun, F.J. Huang, and L. Bottou, “Learning methods for

generic object recognition with invariance to pose and

lighting”, In CVPR, 2004.

[20] C.-L. Liu, F. Yin, D.-H. Wang, et al., “CASIA online and

offline Chinese handwriting databases,” in ICDAR, 2011.

[21] M Schmidt. minFunc.

http://www.di.ens.fr/~mschmidt/Software/minFunc.html.

[22] C.-L Liu, “Normalization-cooperated gradient feature

extraction for handwritten character recognition,” IEEE

Transaction on Pattern Analysis and Machine Intelligence,

29(8): 1465-1469, 2007.

[23] C.-L. Liu, F. Yin, D.-H. Wang, et al., “Online and offline

handwritten Chinese character recognition: benchmarking on

new databases”, Pattern Recognition, 46(1): 155-162, 2013.

479

